Thank you so much! I initially had it like that, and then second guessed myself and moved around the wires. 
One other question, do you have any recommendations on how to convert the arduino code into code for the spark core?
I included the code for arduino at the end of this post. But when I tested it, it says it fails to compile. Also, it says to include:
avr/pgmspace.h
ffft.h
math.h
Wire.h
Adafruit_GFX.h
Adafruit_LEDBackpack.h
So I included the Adafruit GFX and LEDBackpack libraries, but I am not sure how to include the other files such as the ffft.h?
Also, it gives the warning for the adafruit libraries "Defaulting to Release Build"
Code....
// This #include statement was automatically added by the Spark IDE.
#include "Adafruit_GFX/Adafruit_GFX.h"
// This #include statement was automatically added by the Spark IDE.
#include "adafruit-led-backpack/adafruit-led-backpack.h"
/*
PICCOLO is a tiny Arduino-based audio visualizer.
Hardware requirements:
- Most Arduino or Arduino-compatible boards (ATmega 328P or better).
- Adafruit Bicolor LED Matrix with I2C Backpack (ID: 902)
- Adafruit Electret Microphone Amplifier (ID: 1063)
- Optional: battery for portable use (else power through USB)
Software requirements:
- elm-chan's ffft library for Arduino
Connections:
- 3.3V to mic amp+ and Arduino AREF pin <-- important!
- GND to mic amp-
- Analog pin 0 to mic amp output
- +5V, GND, SDA (or analog 4) and SCL (analog 5) to I2C Matrix backpack
Written by Adafruit Industries. Distributed under the BSD license --
see license.txt for more information. This paragraph must be included
in any redistribution.
ffft library is provided under its own terms -- see ffft.S for specifics.
*/
// IMPORTANT: FFT_N should be #defined as 128 in ffft.h.
#include <avr/pgmspace.h>
#include <ffft.h>
#include <math.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_LEDBackpack.h>
// Microphone connects to Analog Pin 0. Corresponding ADC channel number
// varies among boards...it's ADC0 on Uno and Mega, ADC7 on Leonardo.
// Other boards may require different settings; refer to datasheet.
#ifdef __AVR_ATmega32U4__
#define ADC_CHANNEL 7
#else
#define ADC_CHANNEL 0
#endif
int16_t capture[FFT_N]; // Audio capture buffer
complex_t bfly_buff[FFT_N]; // FFT "butterfly" buffer
uint16_t spectrum[FFT_N/2]; // Spectrum output buffer
volatile byte samplePos = 0; // Buffer position counter
byte
peak[8], // Peak level of each column; used for falling dots
dotCount = 0, // Frame counter for delaying dot-falling speed
colCount = 0; // Frame counter for storing past column data
int
col[8][10], // Column levels for the prior 10 frames
minLvlAvg[8], // For dynamic adjustment of low & high ends of graph,
maxLvlAvg[8], // pseudo rolling averages for the prior few frames.
colDiv[8]; // Used when filtering FFT output to 8 columns
/*
These tables were arrived at through testing, modeling and trial and error,
exposing the unit to assorted music and sounds. But there's no One Perfect
EQ Setting to Rule Them All, and the graph may respond better to some
inputs than others. The software works at making the graph interesting,
but some columns will always be less lively than others, especially
comparing live speech against ambient music of varying genres.
*/
static const uint8_t PROGMEM
// This is low-level noise that's subtracted from each FFT output column:
noise[64]={ 8,6,6,5,3,4,4,4,3,4,4,3,2,3,3,4,
2,1,2,1,3,2,3,2,1,2,3,1,2,3,4,4,
3,2,2,2,2,2,2,1,3,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4 },
// These are scaling quotients for each FFT output column, sort of a
// graphic EQ in reverse. Most music is pretty heavy at the bass end.
eq[64]={
255, 175,218,225,220,198,147, 99, 68, 47, 33, 22, 14, 8, 4, 2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
// When filtering down to 8 columns, these tables contain indexes
// and weightings of the FFT spectrum output values to use. Not all
// buckets are used -- the bottom-most and several at the top are
// either noisy or out of range or generally not good for a graph.
col0data[] = { 2, 1, // # of spectrum bins to merge, index of first
111, 8 }, // Weights for each bin
col1data[] = { 4, 1, // 4 bins, starting at index 1
19, 186, 38, 2 }, // Weights for 4 bins. Got it now?
col2data[] = { 5, 2,
11, 156, 118, 16, 1 },
col3data[] = { 8, 3,
5, 55, 165, 164, 71, 18, 4, 1 },
col4data[] = { 11, 5,
3, 24, 89, 169, 178, 118, 54, 20, 6, 2, 1 },
col5data[] = { 17, 7,
2, 9, 29, 70, 125, 172, 185, 162, 118, 74,
41, 21, 10, 5, 2, 1, 1 },
col6data[] = { 25, 11,
1, 4, 11, 25, 49, 83, 121, 156, 180, 185,
174, 149, 118, 87, 60, 40, 25, 16, 10, 6,
4, 2, 1, 1, 1 },
col7data[] = { 37, 16,
1, 2, 5, 10, 18, 30, 46, 67, 92, 118,
143, 164, 179, 185, 184, 174, 158, 139, 118, 97,
77, 60, 45, 34, 25, 18, 13, 9, 7, 5,
3, 2, 2, 1, 1, 1, 1 },
// And then this points to the start of the data for each of the columns:
* const colData[] = {
col0data, col1data, col2data, col3data,
col4data, col5data, col6data, col7data };
Adafruit_BicolorMatrix matrix = Adafruit_BicolorMatrix();
void setup() {
uint8_t i, j, nBins, binNum, *data;
memset(peak, 0, sizeof(peak));
memset(col , 0, sizeof(col));
for(i=0; i<8; i++) {
minLvlAvg[i] = 0;
maxLvlAvg[i] = 512;
data = (uint8_t *)pgm_read_word(&colData[i]);
nBins = pgm_read_byte(&data[0]) + 2;
binNum = pgm_read_byte(&data[1]);
for(colDiv[i]=0, j=2; j<nBins; j++)
colDiv[i] += pgm_read_byte(&data[j]);
}
matrix.begin(0x70);
// Init ADC free-run mode; f = ( 16MHz/prescaler ) / 13 cycles/conversion
ADMUX = ADC_CHANNEL; // Channel sel, right-adj, use AREF pin
ADCSRA = _BV(ADEN) | // ADC enable
_BV(ADSC) | // ADC start
_BV(ADATE) | // Auto trigger
_BV(ADIE) | // Interrupt enable
_BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0); // 128:1 / 13 = 9615 Hz
ADCSRB = 0; // Free run mode, no high MUX bit
DIDR0 = 1 << ADC_CHANNEL; // Turn off digital input for ADC pin
TIMSK0 = 0; // Timer0 off
sei(); // Enable interrupts
}
void loop() {
uint8_t i, x, L, *data, nBins, binNum, weighting, c;
uint16_t minLvl, maxLvl;
int level, y, sum;
while(ADCSRA & _BV(ADIE)); // Wait for audio sampling to finish
fft_input(capture, bfly_buff); // Samples -> complex #s
samplePos = 0; // Reset sample counter
ADCSRA |= _BV(ADIE); // Resume sampling interrupt
fft_execute(bfly_buff); // Process complex data
fft_output(bfly_buff, spectrum); // Complex -> spectrum
// Remove noise and apply EQ levels
for(x=0; x<FFT_N/2; x++) {
L = pgm_read_byte(&noise[x]);
spectrum[x] = (spectrum[x] <= L) ? 0 :
(((spectrum[x] - L) * (256L - pgm_read_byte(&eq[x]))) >> 8);
}
// Fill background w/colors, then idle parts of columns will erase
matrix.fillRect(0, 0, 8, 3, LED_RED); // Upper section
matrix.fillRect(0, 3, 8, 2, LED_YELLOW); // Mid
matrix.fillRect(0, 5, 8, 3, LED_GREEN); // Lower section
// Downsample spectrum output to 8 columns:
for(x=0; x<8; x++) {
data = (uint8_t *)pgm_read_word(&colData[x]);
nBins = pgm_read_byte(&data[0]) + 2;
binNum = pgm_read_byte(&data[1]);
for(sum=0, i=2; i<nBins; i++)
sum += spectrum[binNum++] * pgm_read_byte(&data[i]); // Weighted
col[x][colCount] = sum / colDiv[x]; // Average
minLvl = maxLvl = col[x][0];
for(i=1; i<10; i++) { // Get range of prior 10 frames
if(col[x][i] < minLvl) minLvl = col[x][i];
else if(col[x][i] > maxLvl) maxLvl = col[x][i];
}
// minLvl and maxLvl indicate the extents of the FFT output, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < 8) maxLvl = minLvl + 8;
minLvlAvg[x] = (minLvlAvg[x] * 7 + minLvl) >> 3; // Dampen min/max levels
maxLvlAvg[x] = (maxLvlAvg[x] * 7 + maxLvl) >> 3; // (fake rolling average)
// Second fixed-point scale based on dynamic min/max levels:
level = 10L * (col[x][colCount] - minLvlAvg[x]) /
(long)(maxLvlAvg[x] - minLvlAvg[x]);
// Clip output and convert to byte:
if(level < 0L) c = 0;
else if(level > 10) c = 10; // Allow dot to go a couple pixels off top
else c = (uint8_t)level;
if(c > peak[x]) peak[x] = c; // Keep dot on top
if(peak[x] <= 0) { // Empty column?
matrix.drawLine(x, 0, x, 7, LED_OFF);
continue;
} else if(c < 8) { // Partial column?
matrix.drawLine(x, 0, x, 7 - c, LED_OFF);
}
// The 'peak' dot color varies, but doesn't necessarily match
// the three screen regions...yellow has a little extra influence.
y = 8 - peak[x];
if(y < 2) matrix.drawPixel(x, y, LED_RED);
else if(y < 6) matrix.drawPixel(x, y, LED_YELLOW);
else matrix.drawPixel(x, y, LED_GREEN);
}
matrix.writeDisplay();
// Every third frame, make the peak pixels drop by 1:
if(++dotCount >= 3) {
dotCount = 0;
for(x=0; x<8; x++) {
if(peak[x] > 0) peak[x]--;
}
}
if(++colCount >= 10) colCount = 0;
}
ISR(ADC_vect) { // Audio-sampling interrupt
static const int16_t noiseThreshold = 4;
int16_t sample = ADC; // 0-1023
capture[samplePos] =
((sample > (512-noiseThreshold)) &&
(sample < (512+noiseThreshold))) ? 0 :
sample - 512; // Sign-convert for FFT; -512 to +511
if(++samplePos >= FFT_N) ADCSRA &= ~_BV(ADIE); // Buffer full, interrupt off
}