Hi. I’m using Sparkfun Weather Shield and Photon to get temperature, wind speed, direction & rain level and then send these details to another device using MQTT. I can get the temperature and wind speed values, but not the other two. I’m using the latest code from Weather Shield’s git.
I have no problem in sending this data through MQTT, by which I’m getting the log in JSON like below.
{“Temp”: “80.712502”, “Pres”: “75.750000”, “SM”: “2”, “WS”: “0.000000”, “WD”: “0.000000”, “Rain”: “0”}
{“Temp”: “80.712502”, “Pres”: “75.750000”, “SM”: “2”, “WS”: “1.3452030”, “WD”: “0.000000”, “Rain”: “0”}
Can somebody help me with this? I’ve attached the code below (code needs to be cleaned up, plz bear with that):
// This #include statement was automatically added by the Particle IDE.
//#include "HTU21D/HTU21D.h"
// This #include statement was automatically added by the Particle IDE.
#include "MQTT/MQTT.h"
// This #include statement was automatically added by the Particle IDE.
#include "MyTemp.h"
// This #include statement was automatically added by the Particle IDE.
/*// This #include statement was automatically added by the Particle IDE.
#include "Adafruit_MPL3115A2/Adafruit_MPL3115A2.h"
Adafruit_MPL3115A2 baro = Adafruit_MPL3115A2();
void setup() {
Serial.begin(115200);
delay(5000);
Serial.println("Adafruit_MPL3115A2 test!");
while(! baro.begin()) {
Serial.println("Couldnt find sensor");
delay(1000);
}
}
void loop() {
float pascals = baro.getPressure();
// Our weather page presents pressure in Inches (Hg)
// Use http://www.onlineconversion.com/pressure.htm for other units
Serial.print(pascals/3377); Serial.println(" Inches (Hg)");
float altm = baro.getAltitude();
Serial.print(altm); Serial.println(" meters");
float tempC = baro.getTemperature();
Serial.print(tempC); Serial.println("*C");
delay(250);
}*/
/******************************************************************************
SparkFun_Basic_MPL3115A2_Example.ino
Joel Bartlett @ SparkFun Electronics
Original Creation Date: June 30, 2015
This sketch prints the barrometric preassure, altitude, and temperature F
to the Seril port.
Hardware Connections:
This sketch was written specifically for the Photon Weather Shield,
which connects the MPL3115A2 to the I2C bus by default.
If you have an MPL3115A2 breakout, use the following hardware setup:
MPL3115A2 ------------- Photon
GND ------------------- GND
VCC ------------------- 3.3V (VCC)
SCL ------------------ D1/SCL
SDA ------------------ D0/SDA
Development environment specifics:
IDE: Particle Build
Hardware Platform: Particle Photon
Particle Core
This code is beerware; if you see me (or any other SparkFun
employee) at the local, and you've found our code helpful,
please buy us a round!
Distributed as-is; no warranty is given.
*******************************************************************************/
//#include "SparkFun_MPL3115A2.h"
//HTU21D htu = HTU21D();
// digital I/O pins
//const byte WSPEED = 3;
//const byte RAIN = 2;
const byte STAT1 = 7;
const byte STAT2 = 8;
// analog I/O pins
const byte REFERENCE_3V3 = A3;
const byte LIGHT = A1;
const byte BATT = A2;
//const byte WDIR = A0;
int WDIR = A0;
int RAIN = D2;
int WSPEED = D3;
//Global Variables
float pascals = 0;
float altf = 0;
float baroTemp = 0;
int sensorValue = 0;
int sensorPin = A1; // For soil moisture sensor
int count = 0;
int thresholdUp = 400;
int thresholdDown = 250;
int val = 0;//variable to store soil value
int soil = A1;//Declare a variable for the soil moisture sensor
int soilPower = D5;//Variable for Soil moisture Power
//Global Variables
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
long lastSecond; //The millis counter to see when a second rolls by
byte seconds; //When it hits 60, increase the current minute
byte seconds_2m; //Keeps track of the "wind speed/dir avg" over last 2 minutes array of data
byte minutes; //Keeps track of where we are in various arrays of data
byte minutes_10m; //Keeps track of where we are in wind gust/dir over last 10 minutes array of data
long lastWindCheck = 0;
volatile long lastWindIRQ = 0;
volatile byte windClicks = 0;
//We need to keep track of the following variables:
//Wind speed/dir each update (no storage)
//Wind gust/dir over the day (no storage)
//Wind speed/dir, avg over 2 minutes (store 1 per second)
//Wind gust/dir over last 10 minutes (store 1 per minute)
//Rain over the past hour (store 1 per minute)
//Total rain over date (store one per day)
byte windspdavg[120]; //120 bytes to keep track of 2 minute average
#define WIND_DIR_AVG_SIZE 120
int winddiravg[WIND_DIR_AVG_SIZE]; //120 ints to keep track of 2 minute average
float windgust_10m[10]; //10 floats to keep track of 10 minute max
int windgustdirection_10m[10]; //10 ints to keep track of 10 minute max
volatile float rainHour[60]; //60 floating numbers to keep track of 60 minutes of rain
//These are all the weather values that wunderground expects:
int winddir = 0; // [0-360 instantaneous wind direction]
float windspeedmph = 0; // [mph instantaneous wind speed]
float windgustmph = 0; // [mph current wind gust, using software specific time period]
int windgustdir = 0; // [0-360 using software specific time period]
float windspdmph_avg2m = 0; // [mph 2 minute average wind speed mph]
int winddir_avg2m = 0; // [0-360 2 minute average wind direction]
float windgustmph_10m = 0; // [mph past 10 minutes wind gust mph ]
int windgustdir_10m = 0; // [0-360 past 10 minutes wind gust direction]
float humidity = 0; // [%]
float tempf = 0; // [temperature F]
float rainin = 0; // [rain inches over the past hour)] -- the accumulated rainfall in the past 60 min
volatile float dailyrainin = 0; // [rain inches so far today in local time]
float batt_lvl = 11.8; //[analog value from 0 to 1023]
float light_lvl = 455; //[analog value from 0 to 1023]
void callback(char* topic, byte* payload, unsigned int length);
volatile unsigned long raintime, rainlast, raininterval, rain;
MQTT client("192.168.0.102", 1883, callback);
MPL3115A2 baro = MPL3115A2();//create instance of MPL3115A2 barrometric sensor
void rainIRQ()
// Count rain gauge bucket tips as they occur
// Activated by the magnet and reed switch in the rain gauge, attached to input D2
{
raintime = millis(); // grab current time
raininterval = raintime - rainlast; // calculate interval between this and last event
if (raininterval > 2) // ignore switch-bounce glitches less than 10mS after initial edge
{
dailyrainin += 0.011; //Each dump is 0.011" of water
rainHour[minutes] += 0.011; //Increase this minute's amount of rain
rainlast = raintime; // set up for next event
}
}
void wspeedIRQ()
// Activated by the magnet in the anemometer (2 ticks per rotation), attached to input D3
{
if (millis() - lastWindIRQ > 3) // Ignore switch-bounce glitches less than 10ms (142MPH max reading) after the reed switch closes
{
//client.publish("/eco, \"dailyrainin\":%fn/spark/temperature","wspeedIRQ");
lastWindIRQ = millis(); //Grab the current time
windClicks++; //There is 1.492MPH for each click per second.
}
}
//Calculates each of the variables that wunderground is expecting
void calcWeather()
{
//Calc windspeed
windspeedmph = get_wind_speed();
//Calc winddir
winddir = get_wind_direction();
//Calc windgustmph
//Calc windgustdir
//Report the largest windgust today
windgustmph = 0;
windgustdir = 0;
//Calc windspdmph_avg2m
float temp = 0;
for(int i = 0 ; i < 120 ; i++)
temp += windspdavg[i];
temp /= 120.0;
windspdmph_avg2m = temp;
//Calc winddir_avg2m
temp = 0; //Can't use winddir_avg2m because it's an int
for(int i = 0 ; i < 120 ; i++)
temp += winddiravg[i];
temp /= 120;
winddir_avg2m = temp;
//Calc windgustmph_10m
//Calc windgustdir_10m
//Find the largest windgust in the last 10 minutes
windgustmph_10m = 0;
windgustdir_10m = 0;
//Step through the 10 minutes
for(int i = 0; i < 10 ; i++)
{
if(windgust_10m[i] > windgustmph_10m)
{
windgustmph_10m = windgust_10m[i];
windgustdir_10m = windgustdirection_10m[i];
}
}
//Total rainfall for the day is calculated within the interrupt
//Calculate amount of rainfall for the last 60 minutes
rainin = 0;
for(int i = 0 ; i < 60 ; i++)
rainin += rainHour[i];
}
//Returns the voltage of the light sensor based on the 3.3V rail
//This allows us to ignore what VCC might be (an Arduino plugged into USB has VCC of 4.5 to 5.2V)
float get_light_level()
{
float operatingVoltage = analogRead(REFERENCE_3V3);
float lightSensor = analogRead(LIGHT);
operatingVoltage = 3.3 / operatingVoltage; //The reference voltage is 3.3V
lightSensor = operatingVoltage * lightSensor;
return(lightSensor);
}
//Returns the voltage of the raw pin based on the 3.3V rail
//This allows us to ignore what VCC might be (an Arduino plugged into USB has VCC of 4.5 to 5.2V)
//Battery level is connected to the RAW pin on Arduino and is fed through two 5% resistors:
//3.9K on the high side (R1), and 1K on the low side (R2)
float get_battery_level()
{
float operatingVoltage = analogRead(REFERENCE_3V3);
float rawVoltage = analogRead(BATT);
operatingVoltage = 3.30 / operatingVoltage; //The reference voltage is 3.3V
rawVoltage = operatingVoltage * rawVoltage; //Convert the 0 to 1023 int to actual voltage on BATT pin
rawVoltage *= 4.90; //(3.9k+1k)/1k - multiple BATT voltage by the voltage divider to get actual system voltage
return(rawVoltage);
}
//Returns the instataneous wind speed
float get_wind_speed()
{
float deltaTime = millis() - lastWindCheck; //750ms
//char test[255];
//sprintf(test,"windClicks %d",windClicks);
deltaTime /= 1000.0; //Covert to seconds
//client.publish("/econ/spark/temperature",test);
float windSpeed = (float)windClicks / deltaTime; //3 / 0.750s = 4
windClicks = 0; //Reset and start watching for new wind
lastWindCheck = millis();
//sprintf(test,"windClicks %d",windClicks);
// client.publish("/econ/spark/temperature",test);
windSpeed *= 1.492; //4 * 1.492 = 5.968MPH
/* Serial.println();
Serial.print("Windspeed:");
Serial.println(windSpeed);*/
return(windSpeed);
}
//Read the wind direction sensor, return heading in degrees
/*
int get_wind_direction()
{
unsigned int adc;
adc = analogRead(WDIR); // get the current reading from the sensor
// The following table is ADC readings for the wind direction sensor output, sorted from low to high.
// Each threshold is the midpoint between adjacent headings. The output is degrees for that ADC reading.
// Note that these are not in compass degree order! See Weather Meters datasheet for more information.
if (adc < 380) return (113);
if (adc < 393) return (68);
if (adc < 414) return (90);
if (adc < 456) return (158);
if (adc < 508) return (135);
if (adc < 551) return (203);
if (adc < 615) return (180);
if (adc < 680) return (23);
if (adc < 746) return (45);
if (adc < 801) return (248);
if (adc < 833) return (225);
if (adc < 878) return (338);
if (adc < 913) return (0);
if (adc < 940) return (293);
if (adc < 967) return (315);
if (adc < 990) return (270);
return (-1); // error, disconnected?
}
*/
//Read the wind direction sensor, return heading in degrees
int get_wind_direction()
{
unsigned int adc;
adc = analogRead(WDIR); // get the current reading from the sensor
// The following table is ADC readings for the wind direction sensor output, sorted from low to high.
// Each threshold is the midpoint between adjacent headings. The output is degrees for that ADC reading.
// Note that these are not in compass degree order! See Weather Meters datasheet for more information.
//Wind Vains may vary in the values they return. To get exact wind direction,
//it is recomended that you AnalogRead the Wind Vain to make sure the values
//your wind vain output fall within the values listed below.
if(adc > 2270 && adc < 2290) return (0);//North
if(adc > 3220 && adc < 3299) return (1);//NE
if(adc > 3890 && adc < 3999) return (2);//East
if(adc > 3780 && adc < 3850) return (3);//SE
if(adc > 3570 && adc < 3650) return (4);//South
if(adc > 2790 && adc < 2850) return (5);//SW
if(adc > 1580 && adc < 1610) return (6);//West
if(adc > 1930 && adc < 1950) return (7);//NW
return (-1); // error, disconnected?
}
// recieve message
void callback(char* topic, byte* payload, unsigned int length) {
char p[length + 1];
memcpy(p, payload, length);
p[length] = NULL;
/* String message(p);
if (message.equals("RED"))
RGB.color(255, 0, 0);
else if (message.equals("GREEN"))
RGB.color(0, 255, 0);
else if (message.equals("BLUE"))
RGB.color(0, 0, 255);
else
RGB.color(255, 255, 255);
delay(1000);*/
}
//---------------------------------------------------------------
void setup()
{
// Serial.begin(9600); // open serial over USB at 9600 baud
client.connect("192.168.0.102");
// publish/subscribe
if (client.isConnected()) {
client.publish("/econ/temp","MergedApp");
client.subscribe("/econ/test");
}
//Spark.publish("beamStatus","intact",60,PRIVATE);
//Initialize
while(! baro.begin()) {
client.publish("/econ/temp","InLoop");
// Serial.println("MPL3115A2 not found");
delay(1000);
}
client.publish("/econ/temp","OutLoop");
// Serial.println("MPL3115A2 OK");
//MPL3115A2 Settings
//baro.setModeBarometer();//Set to Barometer Mode
baro.setModeAltimeter();//Set to altimeter Mode
baro.setOversampleRate(7); // Set Oversample to the recommended 128
baro.enableEventFlags(); //Necessary register calls to enble temp, baro ansd alt
//weather shield
pinMode(WSPEED, INPUT_PULLUP); // input from wind meters windspeed sensor
pinMode(RAIN, INPUT_PULLUP); // input from wind meters rain gauge sensor
pinMode(WDIR, INPUT); // input from Wind direction pin
seconds = 0;
lastSecond = millis();
// attach external interrupt pins to IRQ functions
attachInterrupt(RAIN, rainIRQ, FALLING);
attachInterrupt(WSPEED, wspeedIRQ, FALLING);
//attachInterrupt(0, rainIRQ, FALLING);
//attachInterrupt(1, wspeedIRQ, FALLING);
//Humidity
/* while(! htu.begin()){
Serial.println("HTU21D not found");
delay(1000);
}*/
// turn on interrupts
interrupts();
}
//---------------------------------------------------------------
void loop()
{
if (client.isConnected())
{
client.loop();
delay(1000);
//Get readings from sensor
getBaro();
// humidity = htu.readHumidity();
//Rather than use a delay, keeping track of a counter allows the photon to
//still take readings and do work in between printing out data.
count++;
//alter this number to change the amount of time between each reading
//----------------------------------
if(millis() - lastSecond >= 1000)
{
lastSecond += 1000;
//Take a speed and direction reading every second for 2 minute average
if(++seconds_2m > 119) seconds_2m = 0;
//Calc the wind speed and direction every second for 120 second to get 2 minute average
float currentSpeed = windspeedmph;
//float currentSpeed = random(5); //For testing
int currentDirection = get_wind_direction();
windspdavg[seconds_2m] = (int)currentSpeed;
winddiravg[seconds_2m] = currentDirection;
//if(seconds_2m % 10 == 0) displayArrays(); //For testing
//Check to see if this is a gust for the minute
if(currentSpeed > windgust_10m[minutes_10m])
{
windgust_10m[minutes_10m] = currentSpeed;
windgustdirection_10m[minutes_10m] = currentDirection;
}
//Check to see if this is a gust for the day
if(currentSpeed > windgustmph)
{
windgustmph = currentSpeed;
windgustdir = currentDirection;
}
if(++seconds > 59)
{
seconds = 0;
if(++minutes > 59) minutes = 0;
if(++minutes_10m > 9) minutes_10m = 0;
rainHour[minutes] = 0; //Zero out this minute's rainfall amount
windgust_10m[minutes_10m] = 0; //Zero out this minute's gust
}
}
calcWeather();
//----------------------------------
if(count == 5)//prints roughly every 10 seconds for every 5 counts
{
printInfo();
count = 0;
}
}
}
//---------------------------------------------------------------
void printInfo()
{
//This function prints the weather data out to the default Serial Port
//Take the temp reading from each sensor and average them.
// / Serial.print("Baro Temp: ");
// Serial.print(baroTemp);
//Spark.publish("Temparature",String(baroTemp));
//Serial.print("F, ");
//Serial.print("Pressure:");
//Serial.print(pascals);
//Serial.print("Pa, ");
// String baroStr = String(baroTemp, 1); // "30.5"
// calcWeather();
char buffer[512];
// // snprintf(buffer, sizeof(buffer), "{\"Temperature\":" + baroStr + "}");
/*
Serial.println();
Serial.print("$,winddir=");
Serial.print(winddir);
Serial.print(",windspeedmph=");
Serial.print(windspeedmph, 1);
Serial.print(",windgustmph=");
Serial.print(windgustmph, 1);
Serial.print(",windgustdir=");
Serial.print(windgustdir);
Serial.print(",windspdmph_avg2m=");
Serial.print(windspdmph_avg2m, 1);
Serial.print(",winddir_avg2m=");
Serial.print(winddir_avg2m);
Serial.print(",windgustmph_10m=");
Serial.print(windgustmph_10m, 1);
Serial.print(",windgustdir_10m=");
Serial.print(windgustdir_10m);
Serial.print(",humidity=");
Serial.print(humidity, 1);
Serial.print(",tempf=");
Serial.print(tempf, 1);
Serial.print(",rainin=");
Serial.print(rainin, 2);
Serial.print(",dailyrainin=");
Serial.print(dailyrainin, 2);
Serial.print(",pressure=");
Serial.print(pressure, 2);
Serial.print(",batt_lvl=");
Serial.print(batt_lvl, 2);
Serial.print(",light_lvl=");
Serial.print(light_lvl, 2);
Serial.print(",");
Serial.println("#");
*/
sprintf(buffer, "{\"Temp\": \"%f\", \"Pres\": \"%f\", \"SM\": \"%d\", \"WS\": \"%f\", \"WD\": \"%f\", \"Rain\": \"%d\"}", baroTemp, pascals, readSoil(),windspeedmph,winddir,dailyrainin);
//sprintf(buffer, "{ \"Soil Moisture\": %d, \"windspeedmph\":%f, \"winddirection\":%f, \"rainin\":%d}", readSoil(),windspeedmph,winddir,dailyrainin);
client.publish("/econ/spark/temperature", buffer);
//Serial.print("Altitude:");
//Serial.print(altf);
//Serial.println("ft.");
}
int readSoil()
{
digitalWrite(soilPower, HIGH);//turn D6 "On"
delay(10);//wait 10 milliseconds
val = analogRead(soil);
digitalWrite(soilPower, LOW);//turn D6 "Off"
return val;
}
//---------------------------------------------------------------
void getBaro()
{
baroTemp = baro.readTempF();//get the temperature in F
pascals = baro.readPressure();//get pressure in Pascals
altf = baro.readAltitudeFt();//get altitude in feet
}
//---------------------------------------------------------------
Update:
I’m able to get the Wind Direction values but still not able to get rain gauge value. The issue I’m facing is, whenever Rain gauge generates an interrupt, my device(Photon) freezes and I’ve to restart the kit to make it working again. Any solution for this?